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ABSTRACT
Named Entity Recognition (NER) aims to identify the pre-defined
entities from the unstructured text. Compared with English NER,
Chinese NER faces more challenges: the ambiguity problem in
entity boundary recognition due to unavailable explicit delimiters
between Chinese characters, and the out-of-vocabulary (OOV) prob-
lem caused by rare Chinese characters. However, two important
features specific to the Chinese language are ignored by previ-
ous studies: glyphs and phonetics, which contain rich semantic
information of Chinese. To overcome these issues by exploiting
the linguistic potential of Chinese as a logographic language, we
present MPM-CNER (short for Multi-modal Pretraining Model
for Chinese NER), a model for learning multi-modal representa-
tions of Chinese semantics, glyphs, and phonetics, via four pre-
training tasks: Radical Consistency Identification (RCI), Glyph Im-
age Classification (GIC), Phonetic Consistency Identification (PCI),
and Phonetic Classification Modeling (PCM). Meanwhile, a novel
cross-modality attention mechanism is proposed to fuse these multi-
modal features for further improvement. The experimental results
show that our method outperforms the state-of-the-art baseline
methods on four benchmark datasets, and the ablation study also
verifies the effectiveness of the pre-trained multi-modal representa-
tions.

CCS CONCEPTS
• Computing methodologies → Information extraction.
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1 INTRODUCTION
As a fundamental task of identifying structured entities from un-
structured text, Named Entity Recognition (NER) plays a crucial
role in many Natural Language Processing (NLP) downstream appli-
cations, such as representation learning [10, 28], knowledge graph
[18, 43], and Information retrieval [6], etc.

Despite the ever-evolving deep learning architectures that have
witnessed great success in performing NER on English corpus
[37, 38], Chinese NER still faces some language-specific difficul-
ties, like the ambiguity of entity boundary recognition caused by
the absence of the explicit delimiters between Chinese characters
[20, 23]. To overcome these obstacles, some variant architectures
of neural networks based on LSTM (short for Long Short-Term
Memory) [11] were proposed. Zhang and Yang [41] presented a
lattice-based structure to identify the entity boundaries on the char-
acter level. Recently, introducing external knowledge, like lexicon
information, into the deep learning models also attracted the at-
tention of researchers. Ma et al. [25] incorporated all the possible
entity words into the Chinese NER model and indicated the relative
position for each character in the words. Li et al. [16] converted the
NER task into the Machine Reading Comprehension (MRC) task,
which takes advantage of the semantic prior information from the
comprehensive descriptions of entity categories.

However, previous studies mainly focus on the contextual se-
mantic information of the input Chinese sentences but ignore the
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Figure 1: An example of the polyphonic phenomenon in en-
tity boundary recognition. The Latin letters above the rec-
tangle box are the Chinese Pinyin, representing the pronun-
ciation of Chinese characters. Character ‘长’ has two pro-
nunciations, corresponding to two different entity segmen-
tations. The blue rounded rectangles and the dashed arrows
denote the correctly identified entities and the entity bound-
aries, while the red ones denote the incorrect entities.

unique linguistic features of Chinese as a logographic language
[36], i.e., the phonetic and glyph features.

The existence of polyphonic characters is a common phenom-
enon in Chinese phonetics [34]. The different pronunciations of
a polyphonic Chinese character correspond to different semantic
meanings, which prompts the recognition of entity boundaries. As
observed in Figure 1, the Chinese character ‘长’ has two pronunci-
ations, symbolized by Pinyin [42], the official Latinized pronuncia-
tion system for Chinese characters, as ‘cháng [tşha[35]’ and ‘zhǎng
[tşa[214]’. When ‘长’ is pronounced as ‘cháng’, it means the ‘length’,
which helps to correctly identify the entity boundary and the entity
‘长(cháng)江大桥’, while means the ‘leader’ when pronounced as
‘zhǎng’, resulting in the wrong identification of ‘市长(zhǎng)’ as
an entity. This phenomenon shows that developing the modality of
Chinese phonetics has great potential for improving Chinese NER.

Apart from the phonetic features, as a pictographic language,
Chinese characters also contain rich glyphic information that is
highly related to the semantic modality [39]. The Chinese character
is composed of multiple radicals. The neighboring characters in a
Chinese word or an entity sharing the same radical are likely to
have similar semantics [36]. For example, characters representing
geographic locations like ‘河流 (river)’, ‘湖泊 (lake)’, and ‘海洋
(ocean)’ have the same radical ‘氵(water)’. Another benefit of the
radical is to alleviate the out-of-vocabulary (OOV) problem because
the meanings of rare Chinese characters can be inferred from the
shared radicals and the context. For instance, although character ‘澎’
in the word ‘澎湖 ( pescadores)’ is an uncommon Chinese character,
the meaning of this word still can be guessed to be related to a
geographical entity, like a lake, according to the radical ‘氵(water)’
and the neighboring character ‘湖 (lake)’.

It is a non-trivial task to learn the generic representations of Chi-
nese NER from the above multi-modal features. The existing multi-
modal pre-training models mainly focus on the fields of image-
text generation [32], video question answering [15], and visually
grounded dialog [4, 22], etc., which also brings trouble, that is, these
models need a large amount of data from multiple modalities to
align the image and text data.

In contrast, our method takes another route by fully exploiting
the semantics, phonetics, and glyphs information contained in the
Chinese language itself, and hardly require extra aligned corpora.

First, for the semantic information, we adopted the BERT [5] model
to encode the Chinese characters; for the glyph information, we
utilized the Swin-Transformer [21], which serves as a backbone for
encoding visual features, to encode the glyph embedding from the
images of Chinese characters with pre-training tasks: Radical Con-
sistency Identification (RCI) and Glyph Image Classification (GIC).
Similarly, for the phonetic information, we converted the pronunci-
ation audio of Chinese characters into the Mel-spectrogram [27]
and encoded the phonetic feature based on the Swin-Transformer
with pre-training tasks: Phonetic Consistency Identification (PCI)
and Phonetic Classification Modeling (PCM). Then, to dynamically
evaluate the contributions of different modality features in varying
contexts, a novel cross-modality attentionmechanismwas proposed
to fuse the multi-modal representations and establish the interac-
tion between different modalities, for learning the representations
of Chinese characters. Finally, the multi-modal representations of
characters were input into the Conditional Random Field (CRF) [14]
based decoder for extracting Chinese entities.

It is worth noting that our MPM-CNER has an additional ad-
vantage in dealing with smaller datasets of Chinese NER, which
benefits from the full exploitation of the Chinese language. The
detailed results will be given in the ablation experiment part. To the
best of our knowledge, we are the first to combine the multi-modal
features to the pre-training model for Chinese NER, which has been
rarely explored before.

The contributions of our work are summarized as follows:
• A novel multi-modal pre-training model is proposed based
on the Transformer architecture with four pre-training tasks
to achieve the generic representations from Chinese seman-
tics, phonetics, and glyphs, for Chinese NER.

• We present a cross-modality attention mechanism to fuse
the multi-modal features by dynamically evaluating their
contributions to the performance of Chinese NER.

• The extensive experimental results show that our method
outperforms the existing state-of-the-art baseline models
across four popular benchmark datasets and verify the effec-
tiveness of the pre-training paradigm along with the cross-
modality attention.

2 OUR MPM-CNER METHOD
The overview of our MPM-CNER method is shown in Figure 2.

2.1 Input Embeddings
For the Chinese NER task, the input sentence 𝑠 is denoted as the
character sequence: 𝑠 = {𝑐1, . . . , 𝑐𝑖 , . . . , 𝑐𝑛}. The output of sen-
tence 𝑠 is the predicted entity label sequence, denoted as 𝐿 =

{𝑙1, . . . , 𝑙𝑖 , . . . , 𝑙𝑛} in the form of tagging scheme ‘B/M/E/O/S-Type’,
where ‘B’ and ‘E’ represent the beginning and end character of an
entity, ‘M’ signifies that character 𝑐𝑖 is inside an entity, ‘S’ means
the single-word entity, ‘O’ means that 𝑐𝑖 does not belong to an
entity, and ‘Type’ represents the entity type.

In our method, the input character is firstly converted into three
feature embeddings corresponding to different modalities: semantic
embedding, glyph embedding, and phonetic embedding.

Semantic Embedding. Considering that BERT, as one kind of
Transformer [33], has pushed forward the state-of-the-art models
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Figure 2: The overview of the proposed MPM-CNER model.
The first annotation tag ‘B-GPE’ represents the relative po-
sition, ‘Beginning’, and entity type, ‘GPE’, for entity ‘南京
市(Nanjing City)’.

for a large range of NLP tasks, we adopted BERT to encode each
character in the sentence to obtain the semantic embedding of char-
acter 𝑐𝑖 . We initialized the semantic embedding for character 𝑐𝑖 by
summing up the corresponding character and position embeddings,
denoted as:

𝑣𝑖𝑠𝑒𝑚 = e𝑠𝑒𝑚 (𝑐𝑖 ) (1)
where e𝑠𝑒𝑚 (·) represents the semantic embedding lookup table
learned by BERT.

Glyph Embedding. To obtain the glyph embedding of each
character, we first converted the input Simplified Chinese character
into Traditional Chinese character, for retaining more associations
between glyphs and semantics, and retrieved the corresponding
glyph image of character 𝑐𝑖 , denoted as 𝑔𝑙𝑦 (𝑐𝑖 ), from Xinhua Dictio-
nary1, which is the most authoritative Chinese dictionary. Then, we
used the Swin-Transformer [21], which has an iterative structure
of 𝐿 layers, to encode the glyph embedding of 𝑔𝑙𝑦 (𝑐𝑖 ):

𝑣𝑙
𝑔𝑙𝑦

(𝑐𝑖 ) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐸𝑚𝑒𝑏𝑒𝑑 (𝑃𝑎𝑡𝑐ℎ𝑃𝑎𝑟𝑡 (𝑔𝑙𝑦 (𝑐𝑖 ))) , 𝑙 = 1

𝑣𝑙
𝑔𝑙𝑦

(𝑐𝑖 ) =𝑊 -𝑀𝑆𝐴
(
𝐿𝑁

(
𝑣𝑙−1
𝑔𝑙𝑦

(𝑐𝑖 )
))

+ 𝑣𝑙−1
𝑔𝑙𝑦

(𝑐𝑖 ) ,

𝑣𝑙
𝑔𝑙𝑦

(𝑐𝑖 ) = 𝑀𝐿𝑃
(
𝐿𝑁

(
𝑣𝑙
𝑔𝑙𝑦

(𝑐𝑖 )
))

+ 𝑣𝑙
𝑔𝑙𝑦

(𝑐𝑖 ) , 1 < 𝑙 ≤ 𝐿

𝑣𝑙+1
𝑔𝑙𝑦

(𝑐𝑖 ) = 𝑆𝑊 -𝑀𝑆𝐴
(
𝐿𝑁

(
𝑣𝑙
𝑔𝑙𝑦

(𝑐𝑖 )
))

+ 𝑣𝑙
𝑔𝑙𝑦

(𝑐𝑖 ) ,

𝑣𝑙+1
𝑔𝑙𝑦

(𝑐𝑖 ) = 𝑀𝐿𝑃
(
𝐿𝑁

(
𝑣𝑙+1
𝑔𝑙𝑦

(𝑐𝑖 )
))

+ 𝑣𝑙+1
𝑔𝑙𝑦

(𝑐𝑖 ) ,
(2)

where 𝑃𝑎𝑡𝑐ℎ𝑃𝑎𝑟𝑡 means to partition the glyph image into multi-
ple non-overlapping patches and 𝐿𝑖𝑛𝑒𝑎𝑟𝐸𝑚𝑏𝑒𝑑 was then applied
on these patches to obtain the dense glyph vectors. 𝐿𝑁 and𝑀𝐿𝑃
represent the LayerNorm and Multi-Layer Perception.𝑊 -𝑀𝑆𝐴 and
1https://www.cp.com.cn/service/download.html

𝑆𝑊 -𝑀𝑆𝐴 denote the window and shifted window-based multi-head
self-attention module, respectively. The patches were merged along
the layers, following the original Swin-Transformer. We used the
output of the last layer, 𝑣𝐿

𝑔𝑙𝑦
(𝑐𝑖 ), as the glyph embedding of charac-

ter 𝑐𝑖 , denoted as:
𝑣𝑖
𝑔𝑙𝑦

= 𝑣𝐿
𝑔𝑙𝑦

(𝑐𝑖 ) (3)
Phonetic Embedding. To obtain the phonetic embedding of

the input character, we used the Pypinyin Library2 to annotate
each input character with the Chinese Pinyin, based on the input
sentence. Then, we constructed an audio database containing 1,310
kinds of pronunciations for almost all the Chinese characters and
found the corresponding pronunciation audio according to the
Pinyin of the Chinese character, denoted as 𝑎𝑢𝑑𝑖𝑜 (𝑐𝑖 ).

To extract the phonetic features from the pronunciation audio,
we converted the 𝑎𝑢𝑑𝑖𝑜 (𝑐𝑖 ) into the Mel-spectrogram, denoted as
𝑀𝑒𝑙𝑠𝑝𝑒𝑐 (𝑐𝑖 ), which is a two-dimensional graph that reflects the
strength and frequency of the pronunciation audio, using the Li-
brosa3 tool. The final phonetic embedding of character 𝑐𝑖 is:

𝑣𝑖
𝑝ℎ𝑛

(𝑐𝑖 ) = 𝑆𝑤𝑖𝑛-𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 (𝑀𝑒𝑙𝑠𝑝𝑒𝑐 (𝑐𝑖 )) (4)

where the detailed calculation process in 𝑆𝑤𝑖𝑛-𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 (·) is
the same as that in Equation 2.

Then, these embedding features were put into the pre-training
tasks for multi-modal representation learning.

2.2 Pre-training Tasks for Multi-modal
Representations

We proposed four pre-training tasks as follows. The first two tasks
were designed for the glyph modality, while the last two were for
the phonetic modality.

Radical Consistency Identification (RCI). The goal of the
RCI task is to judge whether the radicals of two input Chinese
character images are the same, so as to obtain radical-sensitive
glyph representations. As illustrated in Figure 3, we first constructed
a glyph database containing 18,467 Traditional Chinese characters,
named GlyDB. Next, we randomly selected a Chinese character
from GlyDB and then chose another Chinese character with the
same radical with 50% probability, or a character with a different
radical with a probability of 50%. Then, the glyph embeddings of the
two selected Chinese characters, denoted as 𝑣𝑖

𝑔𝑙𝑦
(𝑐𝑖 ) and 𝑣 𝑗𝑔𝑙𝑦 (𝑐 𝑗 ),

were input into the 𝑆𝑤𝑖𝑛-𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝑔𝑙𝑦 . Lastly, we concatenated
the glyph embeddings of the two Chinese characters learned in the
last layer of the 𝑆𝑤𝑖𝑛-𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝑔𝑙𝑦 model and fed it into a Fully
Connected (FC) layer followed by a sigmoid function to predict
whether the radicals of the two Chinese characters are the same
(‘Yes’ or ‘No’). The binary loss function is defined as:

𝐿𝑅𝐶𝐼 = − 1
𝑁𝑔𝑙𝑦

𝑁𝑔𝑙𝑦∑
𝑖=1

𝑦𝑖𝑅𝐶𝐼 log(𝑝
𝑖
𝑅𝐶𝐼 ) + (1−𝑦𝑖𝑅𝐶𝐼 ) log(1−𝑝

𝑖
𝑅𝐶𝐼 ) (5)

where 𝑃𝑖
𝑅𝐶𝐼

= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (W𝑅𝐶𝐼 [𝑣𝑖𝑔𝑙𝑦 (𝑐𝑖 ); 𝑣
𝑗

𝑔𝑙𝑦
(𝑐 𝑗 )] +𝑏𝑅𝐶𝐼 ), represent-

ing the probability that the radicals of the two characters are the
same and 𝑦𝑖

𝑅𝐶𝐼
is the truth label. ‘;’ denotes the concatenation op-

eration. WRCI and 𝑏𝑅𝐶𝐼 are the trainable parameters, and 𝑁𝑔𝑙𝑦
2https://pypi.python.org/pypi/pypinyin
3http://librosa.org/doc/latest/index.html#librosa
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dicted the correct Chinese characters based on the glyphs.

indicates the total number of sampled characters from GlyDB with
six different fonts, (i.e., 𝑁𝑔𝑙𝑦=110,802).

Glyph Image Classification (GIC). GIC is essentially a multi-
class classification task, designed to identify the correct Chinese
characters corresponding to the input glyphs. As shown in Figure
3, we input the glyph embeddings of the two Chinese characters
into an FC layer followed by a softmax function, respectively, to
predict the probability distribution of the corresponding characters.
The multi-class loss function is given as:

𝐿𝐺𝐼𝐶 = − 1
𝑁𝑔𝑙𝑦

𝑁𝑔𝑙𝑦∑
𝑖=1

𝐾𝐺𝐼𝐶∑
𝑘=1

𝑦
𝑖,𝑘
𝐺𝐼𝐶

log(𝑝𝑖,𝑘
𝐺𝐼𝐶

) (6)

where 𝑃𝑖,𝑘
𝐺𝐼𝐶

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝐺𝐼𝐶𝑣
𝑖
𝑔𝑙𝑦

(𝑐𝑖 ) + 𝑏𝐺𝐼𝐶 ), representing the

probability that 𝑔𝑙𝑦 (𝑐𝑖 ) corresponds to character 𝑐𝑘 , and 𝑦
𝑖,𝑘
𝐺𝐼𝐶

de-
notes the truth label of the character. WGIC and 𝑏𝐺𝐼𝐶 are the
trainable parameters, 𝐾𝐺𝐼𝐶 is the number of Chinese characters in
GlyDB, (i.e., 𝐾𝐺𝐼𝐶=18,467).

Considering that task RCI and GIC are designed to share the
same 𝑆𝑤𝑖𝑛-𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝑔𝑙𝑦 architecture, we applied the joint loss
function for optimizing the parameters, denoted as:

𝐿𝑔𝑙𝑦 = _1
𝑔𝑙𝑦
𝐿𝑅𝐶𝐼 + _2𝑔𝑙𝑦𝐿𝐺𝐼𝐶 (7)

where both hyper-parameter _1
𝑔𝑙𝑦

and _2
𝑔𝑙𝑦

were set to 0.5.
Phonetic Consistency Identification (PCI). The Chinese pro-

nunciation system consists of three parts: the initial, final and tone,
among which the tones can be subdivided into five types: the high-
level tone (¯), rising tone (´), falling-rising tone (ˇ), falling tone (`),
and soft tone ( ) [24]. The PCI task aims to determine whether the
initials and finals of the two Chinese characters are consistent, so as
to refine the pronunciation characteristics of the Chinese language.

To perform the PCI task, firstly, we build an audio database
containing almost all the Chinese character pronunciations, named
PhnDB, which contains 1,310 kinds of pronunciations of Chinese

characters. Next, we randomly selected a pronunciation audio from
PhnDB, and then randomly selected another pronunciation audio
with the same initial and final as the first pronunciation audio
with a probability of 50%, or selected a pronunciation audio that
is different from the initial or final of the first audio, with a 50%
chance. We converted the two pronunciation audios into the Mel-
spectrograms and extracted the phonetic embeddings from them,
which were then input into the 𝑆𝑤𝑖𝑛-𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝑝ℎ𝑛 model for
pre-training. Lastly, the two phonetic embeddings, 𝑣𝑖

𝑝ℎ𝑛
(𝑐𝑖 ) and

𝑣
𝑗

𝑝ℎ𝑛
(𝑐 𝑗 ), learned in the last layer of the 𝑆𝑤𝑖𝑛-𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝑝ℎ𝑛

model were concatenated and input into an FC layer followed by a
sigmoid function to predict whether the initials and finals of the
two audios are both the same (‘Yes’ or ‘No’). For example, in Figure
4, the finals of pronunciation ‘cháng’ and ‘zhǎng’ are the same, but
the initials are different, so the classifier determined that the two
characters are pronounced differently. The objective function to
optimize the 𝑆𝑤𝑖𝑛-𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝑝ℎ𝑛 model is denoted as:

𝐿𝑃𝐶𝐼 = − 1
𝑁𝑝ℎ𝑛

𝑁𝑝ℎ𝑛∑
𝑖=1

𝑦𝑖𝑃𝐶𝐼 log(𝑝
𝑖
𝑃𝐶𝐼 ) + (1−𝑦

𝑖
𝑃𝐶𝐼 ) log(1−𝑝

𝑖
𝑃𝐶𝐼 ) (8)

where 𝑃𝑖
𝑃𝐶𝐼

= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (W𝑃𝐶𝐼 [𝑣𝑖𝑝ℎ𝑛 (𝑐𝑖 ); 𝑣
𝑗

𝑝ℎ𝑛
(𝑐 𝑗 )] + 𝑏𝑃𝐶𝐼 ), repre-

senting the probability that the initials and finals of the two pro-
nunciation audios are the same and 𝑦𝑖

𝑃𝐶𝐼
indicates the truth label.

W𝑃𝐶𝐼 and 𝑏𝑃𝐶𝐼 are the trainable parameters, and 𝑁𝑝ℎ𝑛 denotes the
total number of sampled audios from the PhnDB database, (i.e.,
𝑁𝑝ℎ𝑛=2,620, doubled by flipping the Mel-spectrograms for data
augmentation).

Phonetic Classification Modeling (PCM). As illustrated in
Figure 4, to learn the initial, final, and tone features of Chinese
pronunciations, we input the phonetic embeddings of Chinese char-
acters, trained by the 𝑆𝑤𝑖𝑛-𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝑝ℎ𝑛 model, into an FC
layer followed by a softmax function, and then classified the input
pronunciation audio into its corresponding Chinese pronunciation
category. The optimization objective of the PCM task is:

𝐿𝑃𝐶𝑀 = − 1
𝑁𝑝ℎ𝑛

𝑁𝑝ℎ𝑛∑
𝑖=1

𝐾𝑃𝐶𝑀∑
𝑘=1

𝑦
𝑖,𝑘
𝑃𝐶𝑀

log(𝑝𝑖,𝑘
𝑃𝐶𝑀

) (9)

where 𝑃𝑖,𝑘
𝑃𝐶𝑀

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑃𝐶𝑀𝑣
𝑖
𝑝ℎ𝑛

(𝑐𝑖 ) +𝑏𝑃𝐶𝑀 ), representing the
probability that pronunciation 𝑎𝑢𝑑𝑖𝑜 (𝑐𝑖 ) belongs to the pinyin of
character 𝑐𝑖 , and 𝑦𝑖,𝑘 denotes the truth label of the input audio.
W𝑃𝐶𝑀 and𝑏𝑃𝐶𝑀 are the trainable parameters,𝐾𝑃𝐶𝑀 is the number
of pronunciation audios in PhnDB, (i.e., 𝐾𝑃𝐶𝑀=1,310).

Similarly, we jointly optimized the loss function by minimizing
the negative log-likelihood:

𝐿𝑝ℎ𝑛 = _1
𝑝ℎ𝑛

𝐿𝑃𝐶𝐼 + _2𝑝ℎ𝑛𝐿𝑃𝐶𝑀 (10)

where both hyper-parameter _1
𝑝ℎ𝑛

and _2
𝑝ℎ𝑛

were set to 0.5.

2.3 Cross-Modality Attention for
Representation Fusion

After obtaining the multi-modal representations for the input char-
acter 𝑐𝑖 , denoted as 𝑣𝑖𝑠𝑒𝑚 (𝑐𝑖 ), 𝑣𝑖𝑔𝑙𝑦 (𝑐𝑖 ), and 𝑣

𝑖
𝑝ℎ𝑛

(𝑐𝑖 ), respectively,
through the above four pre-training tasks, we further proposed a
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Figure 4: The pre-training tasks for the phonetic modality.
[+] represents the vector concatenation operation. The in-
puts are the Mel-spectrograms of the pronunciation audios.

novel cross-modality attention mechanism to fuse these represen-
tations by evaluate the contributions of different modalities.

As illustrated in Figure 5, firstly, for the glyph representation
sequence 𝑉𝑔𝑙𝑦 = {𝑣1

𝑔𝑙𝑦
(𝑐1), . . . , 𝑣𝑖𝑔𝑙𝑦 (𝑐𝑖 ), . . . , 𝑣

𝑛
𝑔𝑙𝑦

(𝑐𝑛)}, (1 ≤ 𝑖 ≤ 𝑛),
we combined the semantic representation with the glyph represen-
tation, calculated as:

𝑣𝑖
𝑔𝑙𝑦

(𝑐𝑖 ) =𝑊𝑔→𝑠 𝑣
𝑖
𝑔𝑙𝑦

(𝑐𝑖 )

𝛼
𝑖, 𝑗

𝐹𝑢𝑠𝑒−𝑆𝐺 =

exp
(
𝑠

(
𝑣
𝑗
𝑠𝑒𝑚 (𝑐 𝑗 ), 𝑣𝑖𝑔𝑙𝑦 (𝑐𝑖 )

))
∑𝑛
𝑘=1 exp

(
𝑠

(
𝑣𝑘𝑠𝑒𝑚 (𝑐𝑘 ), 𝑣𝑖𝑔𝑙𝑦 (𝑐𝑖 )

))
𝑠

(
𝑣
𝑗
𝑠𝑒𝑚 (𝑐 𝑗 ), 𝑣𝑖𝑔𝑙𝑦 (𝑐𝑖 )

)
=

𝑣
𝑗
𝑠𝑒𝑚 (𝑐 𝑗 )𝑇 𝑣𝑖𝑔𝑙𝑦 (𝑐𝑖 )√

𝐷

𝐴𝑡𝑡𝑒𝑛(𝑣 [1,..., 𝑗,...,𝑛]𝑠𝑒𝑚 , 𝑣𝑖
𝑔𝑙𝑦

(𝑐𝑖 )) =
𝑛∑
𝑗=1

𝛼
𝑖, 𝑗

𝐹𝑢𝑠𝑒−𝑆𝐺 · 𝑣 𝑗𝑠𝑒𝑚 (𝑐 𝑗 )

(11)

where𝑊𝑔→𝑠 represents the transformation matrix that converts
the dimension of 𝑣𝑖

𝑔𝑙𝑦
(𝑐𝑖 ) to the same as 𝑣𝑖𝑠𝑒𝑚 (𝑐𝑖 ). 𝐷 represents the

dimension of the semantic and the converted glyph representation
vectors. The fused representation after combing the semantic and
glyph representations was denoted as:

𝑣𝑖𝐹𝑢𝑠𝑒-𝑆𝐺 (𝑐𝑖 ) = Atten
(
𝑣
[1,..., 𝑗,...𝑛]
𝑠𝑒𝑚 , 𝑣𝑖

𝑔𝑙𝑦
(𝑐𝑖 )

)
+ 𝑣𝑖𝑠𝑒𝑚 (𝑐𝑖 ) (12)

Then, for the phonetic representation sequence𝑉𝑝ℎ𝑛 = {𝑣1
𝑝ℎ𝑛

(𝑐1),
. . . , 𝑣𝑖

𝑝ℎ𝑛
(𝑐𝑖 ), . . . 𝑣𝑛𝑝ℎ𝑛 (𝑐𝑛)}, we iteratively integrated the phonetic

representation 𝑣𝑖
𝑝ℎ𝑛

(𝑐𝑖 ) with 𝑣𝑖𝐹𝑢𝑠𝑒-𝑆𝐺 (𝑐𝑖 ) in the same way as in
Equation 11 and Equation 12, calculated as:

𝑣𝑖𝐹𝑢𝑠𝑒-𝑆𝐺𝑃 (𝑐𝑖 ) = Atten
(
𝑣
[1,... 𝑗,...,𝑛]
𝐹𝑢𝑠𝑒-𝑆𝐺 , 𝑣𝑖

𝑝ℎ𝑛
(𝑐𝑖 )

)
+ 𝑣𝑖𝐹𝑢𝑠𝑒-𝑆𝐺 (𝑐𝑖 )

(13)
Finally, we achieved the multi-modal representations for Chinese

characters.

2.4 Sequence Prediction Layer
After acquiring the fused embedding of the multi-modal represen-
tations for character 𝑐𝑖 , we input 𝑣𝑖𝐹𝑢𝑠𝑒-𝑆𝐺𝑃 (𝑐𝑖 ) into the Bi-LSTM
model [8] to further aggregate the contextual information from its
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Figure 5: The illustration of the cross-modality attention
mechanism for multi-modal representation fusion. ⊙ and ⊕
represent the vector multiplication and addition operations,
respectively.

neighboring characters. The final output hidden state is ℎ𝑖
𝐹𝑢𝑠𝑒

=

𝐵𝑖-𝐿𝑆𝑇𝑀
(
𝑣𝑖
𝐹𝑢𝑠𝑒-𝑆𝐺𝑃 (𝑐𝑖 )

)
.

Afterwards, the standard CRF model was adopted to predict the
probability of the entity label sequence 𝑦 = {𝑙𝑖 }|𝑛𝑖=1, annotated with
the tagging scheme in the form of ‘B/M/E/O/S-Type’. The formula
was as follows:

𝑝 (𝑦 | 𝑠) =
exp

(∑𝑛
𝑖=1W

𝑙𝑖
𝐶𝑅𝐹

ℎ𝑖
𝐹𝑢𝑠𝑒

+ 𝑏𝑙𝑖−1,𝑙𝑖
𝐶𝑅𝐹

)
∑
𝑦′∈𝑌 (𝑠) exp

(∑𝑛
𝑖=1W

𝑙 ′
𝑖

𝐶𝑅𝐹
ℎ𝑖
𝐹𝑢𝑠𝑒

+ 𝑏𝑙
′
𝑖−1,𝑙

′
𝑖

𝐶𝑅𝐹

) (14)

where 𝑌 (𝑠) represents all the possible label sequences of sentence
𝑠 and 𝑦′ denotes one of the label sequences in 𝑌 (𝑠). W∗

CRF and
𝑏∗
𝐶𝑅𝐹

are the trainable parameters. During decoding, we utilized
the Viterbi algorithm to find the optimal label sequence with the
highest probability. Given 𝑁 labeled training data {(𝑠𝑖 , 𝑦𝑖 )} |𝑁𝑖=1, we
minimize the negative log-likelihood to train our model:

𝐿𝑜𝑠𝑠 = −
𝑁∑
𝑖=1

log (𝑝 (𝑦𝑖 | 𝑠𝑖 )) (15)

3 EXPERIMENTS AND ANALYSES
3.1 Experiment Setup
Datasets and Metrics. Four popular Chinese NER datasets were
adopted to evaluate our proposed method, including OntoNotes4.0
[35], MSRA [40], Resume [41], and Weibo [26]. OntoNotes4.0 and
MSRA were collected from the news. Resume consisted of the re-
sume data from the website Sina4. Weibo was crawled from social
media5. The span-level micro-averaged Precision (P), Recall (R),
and the F1 score were adopted as the evaluation metrics.

In addition, we collected 18,467 traditional Chinese characters as
the dataset, named GlyDB, for pre-training tasks on the glyph
modality, and 1,310 kinds of pronunciations for almost all the

4http://finance.sina.com.cn/stock/index.shtml
5https://www.weibo.com/
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Table 1: Results on OntoNotes4.0 dataset

Models P R F1

BERT+LSTM+CRF [25] 81.99 81.65 81.82
LR-CNN [9] 76.40 72.60 74.45
WC-LSTM [20] 76.09 72.85 74.43
Lattice-LSTM [41] 76.35 71.56 73.88
FLAT [17] - - 76.45
FLAT+BERT [17] - - 81.82
MRC+BERT [16] 82.98 81.25 82.11
PLTE+BERT [23] 79.62 81.82 80.60
SoftLexicon+BERT [25] 83.41 82.21 82.81
Glyce+BERT [36] 81.87 81.40 81.63
ChineseBERT [31] 80.77 83.65 82.18
LEBERT [19] - - 82.08

MPM-CNER(ours) 84.30 80.33 83.21

Chinese characters as the audio dataset, named PhnDB, for pre-
training tasks on the phonetic modality.

Implementation Details. In this paper, the data split of the
training, validation, and test set followed the previous work [25].
The dimensions of the hidden state for BERT were set to 768 and
144 for Swin-Transformer. Adam [13] was adopted to optimize our
model, with initial learning rates of 3e-5 for BERT and 1e-4 for
Swin-Transformer. The batch size was set to 24 on all four datasets.
The dropout rates for OntoNote4.0, MSRA, Resume, Weibo were
0.3, 0.3, 0.1, and 0.5, respectively. The training epochs were set to 5
for dataset OntoNote4.0 and MSRA, and 10 for Resume and Weibo.
The patch size in Swin-Transformer was set to 6×6. The sizes of the
gray-scale glyph images and Mel-spectrograms of pronunciation
audios were 48×48×1 and 48×48×3, respectively. Other parameters
were the same as those in the original Swin-Transformer paper [21].
The experiments were conducted on one NVIDIA Tesla T4 GPU.

3.2 Effectiveness Study
As shown in Table 1 to 4, our MPM-CNER method outperforms all
the compared baseline methods across four benchmark datasets for
Chinese NER, which verifies the effectiveness of our method.

For OntoNotes4.0 dataset, our method surpasses the second-
best method, SoftLexicon+BERT [25], by +0.4 on F1 score. In addi-
tion, our MPM-CNER method outperforms method Glyce+BERT,
which also utilizes the glyph features of Chinese characters, by a
large margin of +1.58 in terms of F1 score. One possible reason is
that Glyce+BERT does not take into account the phonetic features
and fuse the multi-modal representations.

For MSRA dataset, our method outperforms the second-best
model, FLAT+BERT, by +0.13 on F1 score. For Resume dataset, our
method also achieves the new state-of-the-art (SOTA) result com-
pared to the second-best model, Glyce+BERT, with an improvement
of +0.06 in terms of F1 score.

ForWeibo dataset, comparedwith SoftLexicon+BERT [25], which
does not introduce themulti-modal information, ourmethod achieves
a huge improvement of +1.54 on F1 score. One possible explanation
is that the Weibo dataset is crawled from social media, and the con-
tent published by users is more casual. Therefore, the introduction

Table 2: Results on MSRA dataset

Models P R F1

BERT+LSTM+CRF [25] 95.06 94.61 94.83
LR-CNN [9] 94.50 92.93 93.71
WC-LSTM [20] 94.58 92.91 93.74
Lattice-LSTM [41] 93.57 92.79 93.18
FLAT [17] - - 94.12
FLAT+BERT [17] - - 96.09
MRC+BERT [16] 96.18 95.12 95.75
PLTE+BERT [23] 94.91 94.15 94.53
SoftLexicon+BERT [25] 95.75 95.10 95.42
Glyce+BERT [36] 95.57 95.51 95.54
LEBERT [19] - - 95.70

MPM-CNER(ours) 97.12 95.34 96.22

Table 3: Results on Resume dataset

Models P R F1

BERT+LSTM+CRF [25] 95.75 95.28 95.51
LR-CNN [9] 95.37 94.84 95.11
WC-LSTM [20] 95.27 95.15 95.21
Lattice LSTM [41] 94.81 94.11 94.46
FLAT [17] - - 95.45
FLAT+BERT [17] - - 95.86
PLTE+BERT [23] 96.16 96.75 96.45
SoftLexicon+BERT [25] 96.08 96.13 96.11
Glyce+BERT [36] 96.62 96.48 96.54
LEBERT [19] - - 96.08

MPM-CNER(ours) 97.18 96.03 96.60

of multi-modal information can play a role in data augmentation.
For the second-best method, ChineseBERT, which also uses the
glyph and pinyin features, our method still outperforms it by +1.24
on F1 score, which may be attributed to our use of the pronuncia-
tion audio of Chinese characters and our proposed cross-modality
attention.

3.3 Ablation Study
Influences of model components. As shown in Table 5 from
line 1 to 3, after removing the phonetics (‘-w/o Phn’), glyphs (‘-w/o
Gly’), and phonetics+glyphs (‘-w/o Phn+Gly’) modality from our
full model, the F1 scores on four datasets also decreased gradually.
The performance degradation verifies the necessity of multi-modal
features for our method. Besides, we found that when the multi-
modal components were removed on Weibo dataset, the F1 score
decreased significantly by 3.13, which suggests that multi-modal
features are more crucial for social media. We also removed the
cross-modality attention (‘-w/o CM-Atten’) and directly concate-
nated the multi-modal representations of input characters. As a
result, the F1 scores on four datasets decreased, which verifies the
necessity of the cross-modality attention.

Furthermore, we removed the pre-training phase (‘-w/o Pre-
training’) and found that the F1 scores on four datasets all decreased,
indicating the importance of the pre-trainingmodel for boosting the
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Table 4: Results on Weibo dataset

Models P R F1

Peng and Dredze [26] 66.47 47.22 55.28
Cao et al. [1] 55.72 50.68 53.08
Ding et al. [7] 63.10 56.30 59.50
BERT+LSTM+CRF [25] - - 67.33
LR-CNN [9] - - 59.92
WC-LSTM [20] - - 59.84
Lattice-LSTM [41] - - 58.79
FLAT [17] - - 63.42
FLAT+BERT [17] - - 68.55
PLTE+BERT [23] 72.00 66.67 69.23
SoftLexicon+BERT [25] - - 70.50
Glyce+BERT [36] 67.68 67.71 67.60
ChineseBERT [31] 68.75 72.97 70.80
LEBERT [19] - - 70.75

MPM-CNER (ours) 72.98 71.12 72.04

performance of our method. Once again, we observed that the F1
score on Weibo dataset dropped the most (-3.61 on F1 score), which
shows that the pre-training strategy can be used as an effective
data augmentation method for social media.

Influences of data size. To demonstrate the effectiveness of
our MPM-CNERmethod in low data resource settings, we randomly
selected the subsets of 10%, 20%, and 50% from the training datasets
to train our method and the baseline models. In the following exper-
iments, we have tried our best to re-implement method FLAT+BERT
and BERT+LSTM+CRF. According to Table 6, we observed that: 1)
our method outperforms the two baseline methods across various
sizes of training data. 2) The F1 scores grow monotonically when
the data size increases. These phenomena indicate that the more
data we have, the better the Chinese NER methods perform. How-
ever, if there are fewer data available, which is quite common in
practical application scenarios, our MPM-CNER method has ad-
vantages over other Chinese NER methods in dealing with a small
amount of data.

Influences of polyphonic characters. Polyphonic character
is a common phenomenon in the Chinese language. To evaluate
the influences of the polyphonic characters, we further subdivided
each test set into two parts: one contains polyphonic characters,
while another does not. According to the experimental results listed
in Table 7, we observed that, for datasets MSRA, Resume, and
Weibo, our method and the baseline methods all achieved better
performance on the data subsets without polyphonic characters,
compared with the subsets containing polyphonic characters. For
dataset OntoNotes, methods performed on the data sets contain-
ing polyphonic characters achieved better results. In addition, our
MPM-CNER method outperformed the baseline methods in most
cases, whether the datasets contain polyphonic characters or not.
Therefore, the phenomenon of polyphony in Chinese plays an im-
portant role in Chinese NER.

Influences of out-of-vocabulary (OOV) characters. To eval-
uate the influences of the OOV characters, which only appear in
the test set of the dataset, not in the vocabulary of BERT, we split

Table 5: Ablation experiment results on four datasets. F1
scores are reported. ‘-w/o’ means to remove one certain com-
ponent fromourMPM-CNERmethod, e.g., ‘-w/o Phn’means
to remove the phonetic modality from our model.

Model variants OntoNotes MSRA Resume Weibo
MPM-CNER (ours) 83.21 96.22 96.60 72.04

-w/o Phn 82.74 96.14 96.30 70.35
(-0.47) (-0.08) (-0.30) (-1.69)

-w/o Gly 82.48 95.98 96.18 68.99
(-0.73) (-0.24) (-0.42) (-3.05)

-w/o Phn+Gly 81.18 95.76 95.78 68.91
(-2.03) (-0.46) (-0.82) (-3.13)

-w/o CM-Atten 83.11 95.75 96.38 70.31
(-0.10) (-0.47) (-0.22) (-1.73)

-w/o Pre-training 80.30 96.01 95.83 68.43
(-2.91) (-0.21) (-0.77) (-3.61)

Table 6: Performance as a function of the percentage of the
training data used during the training process. F1 scores are
reported on four datasets.

Data Size Methods OntoNotes MSRA Resume Weibo

10%
FLAT+BERT 67.90 88.06 89.62 55.93
BERT+LSTM+CRF 78.60 92.87 94.49 61.29
MPM-CNER (ours) 79.53 93.12 94.98 64.63

20%
FLAT+BERT 73.53 91.22 93.29 64.68
BERT+LSTM+CRF 80.02 93.74 94.90 65.66
MPM-CNER (ours) 80.11 93.86 95.46 66.67

50%
FLAT+BERT 78.58 93.65 93.87 65.93
BERT+LSTM+CRF 81.21 94.64 95.37 66.34
MPM-CNER (ours) 81.98 95.48 95.98 68.40

100%
FLAT+BERT [17] 81.82 96.09 95.86 68.55
BERT+LSTM+CRF [25] 81.82 94.83 95.51 68.43
MPM-CNER (ours) 83.21 96.22 96.60 72.04

Table 7: F1 scores are reported to evaluate the influences
of polyphonic characters on four datasets. ‘-w/o polyPhn’
means the subset of data that does not contain polyphonic
characters. ‘-w polyPhn’ means the subset of data that con-
tains polyphonic characters.

Dataset FLAT+BERT BERT+
LSTM+CRF

MPM-CNER
(ours)

OntoNotes -w/o polyPhn 78.53 80.52 82.73
-w polyPhn 79.83 81.90 84.65

MSRA -w/o polyPhn 94.84 95.51 96.33
-w polyPhn 93.25 95.10 96.16

Resume -w/o polyPhn 97.03 97.80 97.78
-w polyPhn 94.79 94.97 96.29

Weibo -w/o polyPhn 69.76 69.57 73.28
-w polyPhn 57.14 70.05 70.81

the test set into two parts: containing OOV characters or not. The
experiments were performed on the two parts and the results were
given in Table 8. We found that 1) our method surpasses other base-
line methods, whether the dataset contains OOV characters or not.
2) all the methods achieve better results on the dataset that does
not contain the OOV characters, which means the OOV characters
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Table 8: F1 scores are reported to evaluate the influences of
OOV characters on four datasets. ‘-w/o OOV’ means the sub-
set of data that does not contain OOV characters. ‘-w OOV’
means the subset that contains OOV characters.

Dataset FLAT+BERT BERT+
LSTM+CRF

MPM-CNER
(ours)

OntoNotes -w/o OOV 79.45 81.36 83.88
-w OOV 53.19 78.16 82.98

MSRA -w/o OOV 94.10 95.32 96.27
-w OOV 65.45 88.89 89.55

Resume -w/o OOV 95.45 95.81 96.78
-w OOV 66.67 62.50 71.43

Weibo -w/o OOV 63.24 69.67 71.89
-w OOV 81.37 82.84 85.71

lead to the performance degradation for Chinese NER. Only the
Weibo dataset is an exception. One possible reason is that the size
of Weibo dataset is small, and only eight entities in the test set
contain OOV characters, so its results are not representative.

3.4 Case Study
An example is illustrated in Table 9 to intuitively demonstrate
the effectiveness of introducing the semantic, glyph, and phonetic
features for Chinese NER. In this example, our method can cor-
rectly identify the entity ‘中国 (China)’, while other two baseline
methods wrongly concatenated the characters ‘中国 (China)’ and
‘镍 (nickel)’ and recognized them as an incorrect entity ‘中国镍’,
which means ‘the nickel from China’. We attribute the success of
our method to the prompt of Chinese radicals from the glyph infor-
mation. Considering that Chinese character ‘镍 (nickel)’ and ‘钴
(cobalt)’ share the same radical ‘钅’, which means the ‘metal’, and
there is a comma between them, the two characters are likely to
have similar meanings and form a coordinative phrase. Therefore,
it can be inferred that Chinese characters ‘中国 (China)’ and ‘镍
(nickel)’ should not be concatenated and recognized as an entity.

4 RELATEDWORK
Recent advances in deep neural network models have greatly moti-
vated the development of the Chinese NER. Zhang and Yang [41]
proposed a lattice-structured LSTM model to encode the Chinese
characters, which can use both the word and character-level in-
formation for Chinese NER. To disambiguate the recognition of
entity boundaries, Li et al [17] introduced the lexicon information
and simplified the complex lattice structure into a flat structure
consisting of character spans. Ma et al [25] encoded the lexicon
information into the character representations by incorporating all
the lexicon-matched words for each input Chinese character.

However, most studies focused on the contextual semantics of
input Chinese sentences but ignored the phonetic and glyphic in-
formation. Recently, some researchers have turned attention to
encode the glyphs of Chinese characters as the graphic feature for
Chinese NER. Meng et al [36] proposed a Tianzige-CNN to capture
the graphic features of the Traditional Chinese that contain more
pictographic information. Song and Sehanobish [29] also proposed

Table 9: An example from OntoNotes4.0 dataset. Characters
colored in blue and red represent the correct and incorrect
recognized entity, respectively. ‘GPE’ means the entity type.
‘Gold seg’ and ‘GroundTruth’ represent the correct word seg-
mentations and human-annotated entities.

Sentence
(truncated)

中国镍、钴金属依赖进口的局面得到缓解
China’s dependence on imports of nickel and
cobalt has been alleviated.

Gold seg
中国,镍、钴,金属,依赖,进口,缓解
China, nickel and cobalt, metal, dependence,
imports, alleviated

Ground Truth B E(𝐺𝑃𝐸) O O O O O O O O O O O O O O O O
中国(𝐺𝑃𝐸) 镍、钴金属依赖进口的局面得到缓解

FLAT+BERT B M E(𝐺𝑃𝐸) O O O O O O O O O O O O O O O
中国镍(𝐺𝑃𝐸)、钴金属依赖进口的局面得到缓解

BERT+
LSTM+CRF

B M E(𝐺𝑃𝐸) O O O O O O O O O O O O O O O
中国镍(𝐺𝑃𝐸)、钴金属依赖进口的局面得到缓解

MPM-CNER
(ours)

B E(𝐺𝑃𝐸) O O O O O O O O O O O O O O O O
中国(𝐺𝑃𝐸) 镍、钴金属依赖进口的局面得到缓解
China (GPE)’s dependence on imports of nickel and
cobalt has been alleviated.

a CNN-based model to incorporate the semantic and glyph infor-
mation for Chinese NER. Wang et al [34] further verified that the
phonetic radicals of Chinese characters can help in Chinese NER.

To absorb and fuse the multi-modal features, the multi-modal
pre-training model was firstly adopted in the Vision-and-Language
tasks to obtain better representations for downstream applications
[3, 12, 30]. Lu et al [22] acquired the joint visual and textual embed-
ding through a multi-modal model based on the extended BERT
architecture. Chen et al [2] aligned the text and image regions dur-
ing the pre-training process to learn the interaction between the
two modalities. The Transformer-based pre-training model has be-
come a paradigm for the multi-modalities in the Chinese language.

5 CONCLUSION
In this work, a novel multi-modal pre-training model for Chinese
NER, with the cross-modality attention mechanism, was proposed
to fuse the Chinese semantics, glyphs, and phonetics, for further
improve the performance of Chinese NER. Experimental results
verified that our method outperforms previous SOTA baselines
and proved the effectiveness of multi-modal representations, which
sheds light on exploiting the linguistic knowledge for Chinese NER.
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